Ion Movement Explains Huge <i>V</i> <sub>OC</sub> Increase despite Almost Unchanged Internal Quasi?Fermi?Level Splitting in Planar Perovskite Solar Cells
نویسندگان
چکیده
Light soaking under “1 sun” is performed on planar p–i–n perovskite solar cells with a Cs0.05MA0.10FA0.85Pb(I0.95Br0.05)3 absorber while measuring current and voltage transients simultaneously to spectral photoluminescence (PL). From theory tenfold increase in PL intensity expected for every 60 mV rise VOC (at 300 K). However, the investigated show reversible from as low 0.5 up 1.05 V during light soaking, whereas hardly changes. A model developed based mobile ions combination nonideal contact. It reproduces decoupling of well transient behavior great detail. Using state-of-the-art materials passivation layers shows that still relevant feature high-efficiency cells. The ionic liquid additive 1-butyl-3-methylimidazolium tetrafluoroborate slows down light-soaking behavior, giving an example how motion can be influenced.
منابع مشابه
Planar perovskite solar cells using fullerene C70 as electron selective transport layer
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...
متن کاملSequentially Vapor-Grown Hybrid Perovskite for Planar Heterojunction Solar Cells
High-quality and reproducible perovskite layer fabrication routes are essential for the implementation of efficient planar solar cells. Here, we introduce a sequential vapor-processing route based on physical vacuum evaporation of a PbCl2 layer followed by chemical reaction with methyl-ammonium iodide vapor. The demonstrated vapor-grown perovskite layers show compact, pinhole-free, and uniform ...
متن کاملPlanar heterojunction perovskite solar cells via vapor-assisted solution process.
Hybrid organic/inorganic perovskites (e.g., CH3NH3PbI3) as light absorbers are promising players in the field of third-generation photovoltaics. Here we demonstrate a low-temperature vapor-assisted solution process to construct polycrystalline perovskite thin films with full surface coverage, small surface roughness, and grain size up to microscale. Solar cells based on the as-prepared films ac...
متن کاملPlanar heterojunction perovskite solar cells with superior reproducibility
Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demons...
متن کاملFullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells
In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), PCBM/fullerene (C60), C60/bathocuproine (BCP), and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is accep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy technology
سال: 2021
ISSN: ['2194-4288', '2194-4296']
DOI: https://doi.org/10.1002/ente.202001104